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The conduction p r o b l e m  is p resen ted  and solved for  a hollow two- laye r  cyl inder  having the 
f i r s t  l aye r  made of a po lymer ;  the internal  boundary moves  and there  is r epea ted  heating 
f r o m  within. Allowance is made fo r  the heat  of reac t ion  in the f i r s t  l aye r .  

We cons ider  repea ted  heating f r o m  within for  a hollow two- layer  cyl inder  whose f i r s t  l ayer  is of 
po lymer  and whose second l aye r  is highly conducting (steel, copper ,  e tc . ) .  Convection and radia t ion a r e  
r e spons ib le  for  the heat  t r a n s f e r  between the po lymer  and the hot gas on the inside, and also between the 
second l ayer  and the medium on the outside.  The po lymer  on heating undergoes  changes that absorb  heat ,  
r e l e a s e  gaseous  decomposi t ion  products ,  and a l t e r  the the rmophys ica l  p a r a m e t e r s  of the ma te r i a l .  When 
the inside su r face  of the p o l y m e r  r eaches  the fa i lu re  t e m p e r a t u r e  Tf, it s t a r t s  to move with a speed vff) .  
The cyl inder  cools internal ly and external ly  when the heating s tops (Fig. 1). The p r o c e s s e s  all r epea t  dur -  
ing the next heating cycle  in accordance  with the a l te red  thermophys ica l  c h a r a c t e r i s t i c s  and the t e m p e r a -  
ture  dis t r ibut ion.  

The following is the hea t -ba lance  equation for  an e l emen ta ry  volume of the f i r s t  layer :  

R 

qrczrAzh~ = qr+Ar~Z (r -4- Ar) AzAx + cyarArAzhT - -  HhyarArAz - -  clATA~ Z h7 (~'A~ ra) arkhrhz. (1) 
%=r 

Here  the left  side is the heat  pass ing  through an e l emen ta ry  sect ion at r in t ime A~-, while the f i r s t  
t e r m  on the r ight  is the heat  pas sed  by an e l emen ta ry  sect ion at r + Ar in t ime AT and the second t e r m  is 
the amount of heat  absorbed  by the in tervening l aye r  in t ime A'r, which r a i s e s  the t e m p e r a t u r e  by AT, while 
the third t e r m  is the heat  absorbed  by phase  and chemica l  changes in that volume and the fourth t e r m  is the 
heat  needed to r a i s e  the t e m p e r a t u r e  by AT in t ime A~- for  the gases  fo rmed  in the sect ion r to R. 

The following assumpt ions  a r e  made:  a) the gas  e scapes  f r o m  the ma te r i a l  a lmos t  instantaneously;  
b) the gas takes up the t e m p e r a t u r e  of the ma t e r i a l  while pass ing  through the pores ;  c) the gas does not 
r eac t  with the r e s idue .  

Then (1) becomes  

R 

c)T / c)x Or' ' ~ - l - ~ r  / -4- - -  ~,--Cg r - - d r  . r Or OT Ov (2) 
r 

Here  X, c, and y a r e  dependent on T and on the prev ious  h i s to ry  of the m a t e r i a l ,  while Cg is the specif ic  heat  
of the gas fo rmed .  

TABLE 1. 
p e r a t u r e  

Heat of Decomposi t ion as a Function of Tern-  

T, ~ 293 373 473 573 673 773 873 2073 

H 0 4 , 2  4 ,2  2 , 5  0 ,84  0 0 ,84  2 ,5  

Trans la t ed  f rom Inzhenerno-F iz ichesk i i  Zhurnal ,  Vol. 18, No. 1, pp. 139-145, January ,  1970. Original  
a r t i c l e  submit ted  March  20, 1969. 
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Fig .  1 
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F i g .  2.  T e m p e r a t u r e - d i s t r i b u t i o n  cu rves  for  the p o l y m e r ,  hea ted  for  seven  
pe r i ods  of 30 see  at  30 see  in t e rva l s .  

The init ial  condit ion is T(O, r) = T(r) .  

The boundary  condi t ions  a r e  as  follows for  the in te rna l  boundary  F 0-) of the m a t e r i a l  and the ex te rna l  
boundary  at r = R: 

OT 
(3) 

Or 

(4) 

= % ( r -  %) + t r ' -  rll 

Or Or 

T (R; T) = T 1 (R; ~). 

Condit ion (3) neglec ts  r e a c t i o n s  be tween the gas  and the r e s i d u e .  

The fol lowing a r e  the init ial  and boundary  condi t ions  for  the second  l aye r :  

O~q / OTI \~ ~'1 OT1 
cty, Oz *" Or ~ r Or ' 

r l  (0; r) = T 1 (r), 

Tx (R; T) = T (R; T), 

(5) 

(6) 

(7) 

X 1 0 T l  -- X O T_T for r =  R, 
Or Or 

X 1 c)T1 --%(T c - T x ) + e g ( v ~ - T ~ )  for r = R r  
Or 

(8) 

Calcula t ions  show that the t e m p e r a t u r e  d i f fe rence  a c r o s s  the second l aye r  is only a few d e g r e e s  f o r  
a t e m p e r a t u r e  of s e v e r a l  hundred  de g re e s  when a thick p o l y m e r  l a y e r  is in contac t  with a thin highly c o n -  
duct ing second  l aye r .  We t h e r e f o r e  neg lec t  equat ions (5)-(8) and r e p l a c e  the effect  of the second  l a y e r  on 
the f i r s t  by  a t h e r m a l - c a p a c i t y  t e r m  in the boundary  condit ion (4), which b e c o m e s  

~, c)T OT 
0--r- : ar (T c - -  T) -}- so (T 4 - -  T 4) --- c12161 ~ for r = R, (9) 

6L = RI -- R. 

The equation fo r  the boundary  F (r) is 

/" (T) = ro + J~' v (~) d~, ( 1 o) 
0 
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where  vff)  is determined by exper iment  for  T -> Tf; vff)  = 
ture  at which flow occurs  on account of mechanicaI disruption of the char  by the gas flow. 

To (2) we apply 

r = r (~) + x [~ - r (~)], 

to r e f e r  this to an equation for a fixed boundary,  which gives 

�9 02T + 0~, 

[R-F(~)J '  o . T  o r  

{ i o,[o  • ~-~, [r(~)+,(n-r(~))]-~- 

0 for  T < Tf, where  Tf is the sur face  t empe ra -  

o < x . . <  1 (11) 

1 ( OT ~2 1 OT 
[ ~ - r ( , ) ] ,  \-L2] + {r(~)+x[~-r(ql[~-r(~)] Ox 

z/(l - -  x) OT 
[n--r(~)]d~=ffv--HST/kN n--r( , )  ~ .(le) R--/'(x) Ox 

Then 0T/0r  is rep laced  in the boundary conditions by 

1 OT 

R - - / ' ( 0  ax " 

Equation (12) with the boundary conditions has been solved by the grid method [1] with an M-20 com-  
puter .  

The following a re  the working formulas  for  T: 

Ax 
Ti,i+ 1 = Ti. J + 

c (T~,]) y (T:a) - -  H (Ti,i) Oy (Tid) 
J [~ -  r (~])] 

OT 

;~. (Ti,~) Ti+I,~ - -  2Tz,] -b T~_~,j + OL (T~.j) 1 
x R - -  F (~s) (Ax) '~ OT R - -  r (.cj) 

x ( T i+I '~- -T~]"  1 
, hx ' [ +  F (*j) +xi [R --  F (*])] (13) 

• x (r~])--c~ (r (~) + ~ i~--r(~))) e~ 
(T~.i) 

dT 

)) ( Th.j _ Th,j_l Th+~,j I Th,j AX" 
A C E  ( ~ - -  r(,~)) ~(1 --x~) Ax • 

' Ti+l ~ Ti'J/, 

i = 1 ,  2 . . . . .  n - - l ;  ] = 0 ,  1, 2 . . . . .  O.~..x.~I, "r 
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Fig .  3. Envelope t empera tu re  (~ for  polymer  mate r ia l ,  a) 
12 mm, b) 17 mm, thick. Curves 1), 2) continuous heating 
for  200 sec; 3), 6) seven heatings of different  lengths at 30 
sec intervals ;  4), 12) 42 sec intervals ;  4), 7) heating for  one 
per iod of 165 sec and six of five sec at 30 sec intervals;  10), 
13) 42 sec intervals ;  5), 8) heating for  75, 40, 30, 20, 10 and 
10 sec,  in tervals  70, 40, 30, 20, 10, 10 sec; 11), 14) in t e r -  
vals 90, 55, 45, 30, 20, 10 sec .  
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At F('rj) : ro + 

f o r  r = 1:{. 

j*,i v ('r) d'r 
0 

, L (To,y) T~,~+a 

To1+ ' = R - -  F ('~y) h x  
" ~ (To, A 

T4-(~ ") - -  T4 " -J- ~ g ( ' r i ) ]  
_ _  + [eg(~i, To, j ) a _:~,'v " o,i Ts'(xi) --To, I Tg(x~) 

R__F(,rs) A---~+ eg('~p To,j) Tg(.~y)__To, j +ag('~s) 

Tn, j+l= 

~' (T,~,J) T~,-1i+1 [ 4 - - 4  o] 
R--F(z~) h x  + %(T"'s) ~ - -  + a To--T~, j Ax 

R - - F  (xi) Ax + e~ ~ + a~ T O - -  T,~,s h'r 

(14) 

(15) 

The t ime step is chosen f rom 

2max k (T) 
c (T) y (T) 

Tables as follows [for k(T)] supply ?~(T), c (T) ,  and y(T) :  k(T) = ?q(T) for  T o ~ T -< T k if the t empe ra -  
ture  has not yet  r i s en  above Tk, and k (T) = X2(T ) (T O -< T -< Tk) if the t empera tu re  at previous  t imes has 
been above Tk, and Xl(T) = )k2(T ) for  T > Tk, where T k is the t empera tu re  above which there  is no con-  
s iderable  change in the density of the mate r ia l .  

It is envisaged that y follows an Arrhenius  law: 

Then (11) t r ans fo rms  to 

1 02T .+ dL (T) 1 ( OT ) '  
~,(T) R - - F ( " c )  Ox' dT [R--F(x)]  u \ ~ x ]  

(17) 

1 + (T) 
r (~) + x [R - r (~)] 

1 OT 
x 

R - - F ( ~ )  Ox 

I OT 
= c (T) ~ (~) . Ox 

1 OT 1 
; ~ - r ( ~ )  ~ Z  +C' k r ( ~ ) + x [ R - - r ( ~ ) ]  

1 

x 

v (1 - -  x) OT + H  (T) [~ (~) - -  ~ (7")] k exp , ~ -  , 
R - -  I"(~) Ox 

V (~) = % - -  k j" [V (z) - -  Yk (7")1 exp - -  ~ dz. 
0 

Figure  2 shows the t empera tu re  distribution in the polymer  on repeated  heating. The second layer  
heats up considerably during the halts  in the heating, because  there  a r e  la rge  t empera tu re  gradients  at the 
boundary between the l ayers  at the instant when the heating stops [2]. 

Figure 2 shows that D2T/DX 2 has an inflection in the region 573-673~ which coincides with the peak 
in H(T),  which means that the l aye r  at 573-673~K acts as a b a r r i e r  during t r ans fe r  of heal  f rom the po lymer  
to the second l aye r .  When that l ayer  r eaches  773-873r the t empera tu re  of the shell  s t a r t s  to r i s e  rapidly,  
which indicates that the polymer  has cha r r ed  completely.  

Figure 3 shows the t empera tu re  as a function of Lime for  the second layer  under var ious conditions of 
heating. 

The curves  of F igs .2  and 3 have been calculated for  r 0 = 0.3 m, Tf  = 2073~ initial t empera tu re  of 
mater ia l  and medium 293~ rY o = 5.8, gas t empera tu re  within the cyl inder  2273~ a i = 116, and e i = 0.9 
during heating. 
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Fig . 4 .  Thermal  cha rac t e r i s t i c s  of 

mater ia l  with t empera tu re .  

The other  cha rac t e r i s t i c s  a re  dependent on T: r (degree  
of blackness  of the internal  surface)  var ies  f rom 0.8 to 0.5 
(293-2073~ ~0 var ies  f rom 0.6 to 0.7 (293-2073~K), c 1 = 460- 
545 (293-1173~K). Figure 4 shows how the thermophysical  pa ra -  
me te r s  va ry  with T, while Table 1 gives H(T). 

All the curves  of Fig. 3 have been calculated for  a total hea t -  
ing time of 200 sec with a rb i t r a ry  cooling intervals .  Figure 3a 
is for  po lymer  12 mm thick, while Fig. 3b is for  17 mm. Curves 
1 and 2 show the t empera tu re  of the shell during continuous hea t -  
ing for  200 sec.  The following conclusion can be drawn f rom 
curves  1, 2, and the res t :  the shell  t empera tu re  with a rb i t r a ry  
heating is 2-3 t imes that for  continuous heating for  a fa i r ly  wide 
range of po lymer  th icknesses .  We thus natural ly have the con-  
cept of the conditions wors t  as r ega rds  shell  t empera ture ,  i .e. ,  

heating and cooling t imes (with a fixed overa l l  heating time) such as to give the highest t empera tu re  for  
the shell .  

This la t te r  condition was de termined  by a special  s ea rch  p rogram.  

The r e su l t s  of Fig. 3 show that the wors t  conditions occur  when the f i r s t  few heating cycles  consti tute 
a large  f rac t ion of the total heating t ime.  

N O T A T I O N  

T 
"r 

r 

X, c ,  2/ 

H 

OL i, OZ O 
6t 
g 

v 

z 

is the t empera tu re ,  ~K; 
is the t ime,  see; 
is the radius ,  m; 
a re  the thermal  p a r a m e t e r s  of mate r ia l ,  W/m OK, J / k s  OK, N/m3; 
is the heat of po lymer  decomposit ion,  J /kg;  
a re  the heat t r ans fe r  coeff icients ,  W/m2; 
is the thickness of envlope, m; 
is the effective emiss ivi ty;  
is the veloci ty  of inner boundary,  m / s e c ;  
is the angle; 
is the coordinate  along cyl inder  genera t r ix .  

S u b s c r i p t s  

i r e f e r s  to the gas inside the cyl inder;  
o r e f e r  to the gas outside the cyl inder .  

1. 
2. 
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